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Abstract

Nervous systems process information. This platitude contains an in-

teresting ambiguity between multiple senses of the term information. Ac-

cording to a popular thought, the ambiguity is best resolved by reserving

semantic concepts of information for the explication of neural activity at

a high level of organization, and quantitative concepts of information for

the explication of neural activity at a low level of organization. This arti-

cle articulates the justification behind this view, and concludes that it is

an oversimplification. An analysis of the meaning of claims about Shan-

non information rates in the spiking activity of neurons is then developed.

On the basis of that analysis, it is shown that quantitative conceptions

of information are more intertwined with semantic concepts than they

seem to be, and, partially for that reason, are also more philosophically

interesting.

∗This is a pre-print of an article that appears in a 2017 special issue of Topoi, dedicated
to themes found in the work of both Daniel Dennett and Nicholas Humphrey.
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1 Introduction

If anything deserves to be called an information processing device, the brain

does. Sophisticated behavior requires a device that can track and process an

enormous amount of data. How does the brain manage it? The neuron doctrine,

first established on the basis of anatomical evidence in 1905 by Ramón y Cajal,

says that individual neurons are the brains fundamental functional units, and

that they play this role by sending chemical and electrical signals to one another.

Neurons, it seems reasonable to infer, must themselves be simple information

processing devices. This idea is old, and has played a fundamental role in the

development of neuroscience. McCulloch and Pitts began referring to it as a

law of neural science back in 1943 (McCulloch and Pitts, 1943).

Despite this, it is not easy to find a straight answer to the question: what

kind of information do neurons process? Philosophers have suggested that, at

the most coarse-grained level of analysis, there are just two kinds: Shannon

information, and semantic information (Godfrey-Smith and Sterelny, 2008; Pic-

cinini and Scarantino, 2011). A physical signal conveys semantic information

if it conveys an instruction or reports a fact. Human language provides the

most obvious examples of semantic information transmission, but semantic in-

formation can also be transmitted without the use of language. For example,

a stop sign and a red traffic light convey the same instruction, but only one

of them uses language to get the message across. Shannon information, which

derives from an area of applied mathematics called information theory, has less

to do with the meanings of signs, and more to do with the frequency with which

different signal types appear.

When cognitive psychologists talk about information processing operations

in the brain, they are typically talking about a version of semantic information.

Cognitive psychologists are typically interested in understanding how purpose-

ful behavior gets generated by the mental representations of the world that

are stored in our heads. Mental representations can transmit both varieties

of semantic information mentioned above. Perceptual representations function

like reports about the nature of the perceived environment, while motor rep-

resentations function like instructions to behave this way or that. However,

when we descend to the level of a single neuron, and attempt to describe the

spiking behavior observed at that level, semantic concepts no longer have any

clear application. Neuroscientists who study the properties of individual spike

trains tend to talk readily about Shannon information, but not about particular
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instructions or commands that action potentials are meant to convey.

So, at least at first glance, the best answer to the question what kind of

information is brain information? seems to have two parts. At a high level

of neural organization, brain information is semantic, but down at the level

of single neurons, semantic properties are irrelevant, and the only information

to speak of is Shannon information. My aim in this article is to flesh out

this bifurcated view of how informational concepts apply to the brain and ask

whether it is justified. The upshot of the discussion is that the bifurcation

is somewhat less clear than our first glance suggests, and that claims about

Shannon information at the single neuron level are not entirely independent

from concerns about semantic properties.

2 Why Action Potentials Do Not Transmit Se-

mantic Information

In order to assess the bifurcation view of brain information, we need to un-

derstand the philosophical rationale behind the application of semantic terms.

Ordinary language philosophers, inspired by Ryle and Wittgenstein, were the

first to make the articulation of this rationale a core feature of philosophical

theory. On their view, semantic properties emerge only in contexts in which

human agency is at work. They argued that terms like “perceive, “think, and

“process information can only be sensibly applied to rational agents. For them,

to apply these terms to small neural structures within the brain is to make a

kind of category mistake called the “mereological fallacy (Bennett and Hacker,

2003). Their reasoning can be summarized with the following argument: (i)

agential language can only be applied to persons; (ii) to say that a thing pro-

cesses information is to describe it in agential language; (iii) neurons are not

persons; (iv) neurons, therefore, cannot be described as information processing

devices.

Today, most philosophers of mind and language are usually happy to reject

premise (i), and are, accordingly, willing to countenance semantic phenomena

in systems far simpler than fully rational human persons. Nevertheless, at least

within naturalistic philosophy, a kernel of the ordinary language view has been

retained. It can be expressed as a necessary condition on the realization of se-

mantic properties. A physical signal has semantic properties only where there

is an interest-driven justification for the response it engenders. This principle
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is one of the core ideas behind recent work on the evolution of meaning and

communication.1 Since human persons clearly have interests, and since they

typically respond to perceptual information by behaving in ways that further

their interests, their perceptual and cognitive states can, according to this prin-

ciple, justifiably be described as signals that transmit semantic information.

More interestingly, this principle also justifies the use of semantic description in

very simple organisms. Consider quorum sensing. Some bacteria will emit a sig-

naling molecule once they detect that the density of conspecifics has surpassed

some threshold. If the signal is successfully received by neighboring bacteria,

it can trigger interesting collective behaviors such as the formation of a biofilm

(Rutherford and Bassler, 2012). In this example, the relevant sense of “inter-

est is evolutionary rather than rational. The formation of the biofilm is in the

interest of the initial bacterium because it is adaptive. It might, for example,

allow the bacterial colony to remain attached to a surface where it is likely to

get continued access to nutrients.

We now have an initial understanding of a naturalistic philosophical rationale

behind the description of behavior in semantic terms. Given this rationale,

we can ask: do spike trains carry semantic information? Surprisingly, and

despite the fact that neurons clearly participate in the generation of semantic

phenomena, there are at least two good reasons to think that they do not

themselves exhibit semantic properties. The first reason is that, unlike bacteria,

neurons do not have interests in the standard evolutionary sense. Most neurons

do not undergo mitosis, and therefore cannot form anything like cell lineages

within the lifetime of an individual organism. Because they do not form lineages,

they are not subject to natural selection. As a result, the notion of “evolutionary

interests does not apply to neurons in the relatively clear way that it does apply

to bacteria. If neurons do have interests, it is only in an extremely attenuated

sense, the usefulness of which is controversial.2

There is, in any case, a more fundamental reason to think that spike trains

do not carry semantic information: they do not have the right kind of causal

connection to the environment. To see this, consider the strategy for attributing

semantic content that Daniel Dennett calls “the intentional stance” (Dennett,

1989). In order to predict the behavior of an organism, you treat it as a rational

agent. Given your knowledge of the organisms goals and the environment in

1Versions of this idea are supported, for example, in Skyrms (2010), Harms (2006), Godfrey-
Smith and Mart́ınez (2013), and Calcott (2017).

2For a discussion of this issue, see Chapter 8 of Dennett (2017).
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which it is embedded, you formulate a hypothesis about which mental content

it would make sense for it to have. The attribution of content is justified to the

extent that it allows you to make more efficient and/or more accurate predictions

about the behavior of the organism.3

The intentional stance will typically provide little justification the ascription

of semantic content to a spike train because, when we observe the spike train

of a single neuron, it is typically far from clear exactly which behavioral goal it

is meant to realize. This is because, as Rosa Cao has eloquently demonstrated

(Cao, 2012), whole organism behaviors are typically generated by a symphony

of neural activity to which any given neuron makes only a small contribution.

Most individual spike trains do not reliably cause whole-organism behaviors

that can be interpreted as furthering the interests of the organism, and therefore

cannot be reasonably viewed as sending signals with a particular meaning that

is derived from its association with that behavior.

In his new book, which includes a lengthy discussion of the distinction be-

tween Shannon information and semantic information, Dennett seems to share

Cao’s view. Although the intentional stance might be applicable to some extent

at the coarse-grained level of functional neuroanatomy, such as in the discovery

that the fusiform face area has the function of processing perceptual informa-

tion about faces, it seems inapplicable, given the current state of knowledge, to

the incredibly convoluted details of individual neuron connectivity and activity

(Dennett, 2017, p. 111).

So we seem to have a clear rationale for attributing semantic properties to

whole organisms, but no corresponding rationale for attributing semantic prop-

erties to the behaviors of individual neurons. When viewed as an isolated fact,

this is not surprising. After all, we attribute all sorts of interesting properties

to whole organisms that we do not attribute to their parts. But the situation

does become puzzling when we reflect on the widespread use of informational

terminology at the single neuron level. Open any introductory neuroscience

textbook and you are bound to find some version of the the claim that neurons

send information to one another. Moreover, in the first paragraph of this essay,

I gave a casual argument in support of the claim that neurons are information

processing devices. However, if we have no rationale for the ascription of se-

mantic properties to trains of action potentials, then either that argument is

3Notice that this strategy entails, but is not entailed by, the necessary condition for the at-
tribution of semantic properties mentioned above. This places Dennetts approach to semantic
information within the naturalistic tradition.
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flawed, or it appeals to a sense of the word “information that is distinct from

the more common, semantic sense.

One of the reasons that the concept of Shannon information seems useful

is that it supplies this distinct sense of the term “information. Shannon infor-

mation is austere and mathematical. It depends on nothing other than the

probabilities associated with spike trains, and those probabilities can be esti-

mated by means of direct empirical measurement. And empirical measurement,

one hopes, does not require the application of controversial principles from the

philosophy of mind! As Shannon and Weaver claimed in the opening of their

landmark book on information theory, These semantic aspects of communica-

tion are irrelevant to the engineering problem (Shannon and Weaver, 1949, p. 2).

But if Shannon information has nothing at all to do with semantic information -

if it is just a scientifically neutral mathematical concept - why bother describing

spike trains as informational in the first place? Is it just a linguistic accident

that we use the term “information to describe these two sets of properties? I

think the relationship between semantic information and Shannon information

is more subtle than that. To see why, I will now introduce some basic ideas from

information theory, and then briefly describe how they are used in the study of

spike trains.

3 Information Theory and Its Use in Neuro-

science

The central quantity in information theory is called entropy. Entropy is a mea-

sure of how much information is associated with a single message. How to

capture that idea quantitatively? Intuitively, the amount of information in a

communication system is related to its capacity to reduce uncertainty. If a

message is highly probable, then one can be fairly certain that it will be ex-

pressed. If improbable, one has very little certainty that it will be expressed.

This suggests that the entropy of a message should be inversely proportional to

its probability. Another natural requirement is that the amount of information

in a sequence of two messages should be the sum of the information provided

by each individual message. Probabilities combine multiplicatively (the prob-

ability of two heads in a row is (1/2)(1/2)). Additivity is imposed by taking

the logarithm. So, the expression for the entropy of an individual message x is

the logarithm of the inverse of its probability, or log(1/p(x)). This shows that,
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on any given occasion, the production of a low probability message provides a

large amount of information. However, since low probability messages occur in-

frequently, they contribute less to the average entropy of an information source

than do higher probability messages. To compute the average entropy of an in-

formational source, we therefore weight the entropies of individual messages by

their probabilities. Summing over those weighted entropies yields the average

entropy of an informational source.

H(X) =
∑

p(x)log2(1/p(x)) (1)

One consequence of this expression is that the more variation there is in

a set of signals, the more entropy there is in the source from which they are

derived. Imagine I regularly report to you the results of the football games

that occur at my home stadium. Then, we can think of my home stadium as

an information source. There is probability distribution over the possible game

outcomes. There is a distinct distribution over the possible things I might say

about those outcomes. The term messages refers to the outcomes themselves.

The term signals refers to the things I say in order to relay the messages.

Message and signal entropies are properties of individual components within

a communication system. In order for the communication system to function

well, the signals and the messages must be systematically related. The measure

of that relationship is called the mutual information. If my reports to you on

the football games deserve to be called informative, there must be a correla-

tion between the reports and the outcomes themselves. From a mathematical

perspective, mutual information is similar to statistical measures of correlation

between random variables, except that it scales with the entropy (variability) in

the source variable. If we assume that my reports about the football games are

always accurate, so that the correlation between signals and messages is 1, the

amount of mutual information in the system is equivalent to the initial entropy

(variability) in the distribution of game outcomes. So, if our arrangement is

that I report to you the final score of each game, the amount of mutual in-

formation expressed by our communication system will be substantially higher

than it would have been, had we arranged for me to report only the name of

the winning team.

We can think about the entropy of the distribution of game outcomes as

equivalent to your average degree of uncertainty about game outcomes. Call

that variable H(X). To compute the mutual information, we subtract the in-

7



formation that you could in principle acquire about the value of X, given knowl-

edge of the value of Y . This term can be expressed as H(X|Y ). The mutual

information, therefore, can be written as:

I(X,Y ) = H(X)−H(X|Y ) (2)

Mutual information is measured in bits. But since the mutual information

between two variables can change over time, the quantity of interest in theo-

retical neuroscience is more often the bit rate; that is the number of bits one

variable carries about another per time unit.

Most of the experimental data on bit rates for individual neurons comes from

experiments on perceptual neurons. The organism is fixed in place, presented

with a particular class of stimuli, and recordings are made from the neuron of

interest.

Neural information in response to dynamic stimuli

Animal System Bits/s Coding Efficiency
Frog auditory 133 90%

Cricket sensory afferent 294 50%
Electric fish p-afferent 200 50%

Table 1: Adapted from Borst and Theunissen (1999). Standard claims about
the capacity of perceptual neurons in various organisms to transmit information.

The estimates in Table 1, which are taken from a classic review paper, con-

stitute canonical examples. The quantities in the first column represent the bits

per second transmitted by a perceptual neuron under natural stimulus condi-

tions. Those in the second represent the average coding efficiency of the spike

train of that same neuron. The coding efficiency is the ratio of the rate in the

first column to the default entropy of the neurons spiking behavior - that is,

its behavior in the absence of a characteristic stimulus. The ratio is so called

because it describes how much of the variance in a neurons spike train is ex-

ploited to carry information about changes in a time-dependent stimulus. As

the ratio approaches one, the neuron is said to approach the physical limits on

the transmission of information (Rieke et al., 1993; Koch et al., 2004).
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4 The Ontological View

So far, Ive described very briefly how information theoretic ideas are used in

neuroscience. Now I want to shift focus to a related question: what exactly

does it mean to say that a neuron transmits Shannon information? What is

the empirical content of this claim? Answering these questions will help us to

evaluate the justification for the bifurcation view of brain information discussed

at the outset.

According to one prominent tradition, to say that a physical thing carries or

expresses Shannon information simply means that there is an empirical correla-

tion between it and some other physical thing. The empirical correlation view

is expressed, for example, in the Stanford Encyclopedia of Philosophy entry on

information in biology. There, Kim and Godfrey-Smith say that information is

present wherever there is contingency and correlation.

For Shannon, anything is a source of information if it has a number

of alternative states that might be realized on a particular occasion.

And any other variable carries information about the source if its

state is correlated with the state of the source (Godfrey-Smith and

Sterelny, 2008).

What is the motivation for this extremely permissive view of information?

Philosophers interested in the mind and brain who have discussed Shannon in-

formation have usually done so in the context of either endorsing or denying a

proposal to provide a reductive explanation of semantic phenomena in terms of

raw empirical probabilities. This is a long-standing project undertaken first by

Fred Dretske (whose ultimate goal was a naturalistic account of knowledge), and

continued today by Brian Skyrms and his followers. In order for that kind of

reductive project to make sense, the notion of Shannon information cannot pre-

suppose the existence of semantic properties. Philosophers interested in making

progress on this reductive project therefore have a reason to conceptualize Shan-

non information in such a way as to ensure that ascribing it to a physical system

is both risk-free and thoroughly uncontroversial. Given this understanding of

the concept, Shannon information will be instantiated in the relation between a

stimulus and a perceptual neuron, but it will also be instantiated in the relation

between any two arbitrarily chosen neurons, provided that those neurons are

not perfectly stochastically independent.
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This permissive ontological view is not adequate for interpreting the scientific

content of the claim that a neuron carries or transmits Shannon information.

Common causes and spurious correlations are everywhere. Covariation among

empirical variables is therefore cheap. Without some independently motivated

theoretical framework, bare correlation is no aid to understanding how a system

works. This is especially true in a complex networked system like the brain. In

such a system, correlation is practically ubiquitous. So, if Shannon information

is just a fancy term for empirical correlation, as the ontological view suggests,

Shannon information is ubiquitous. If Shannon information is ubiquitous, hav-

ing particularly high rates of Shannon information flowing through a system

cannot be viewed as a functional capacity of the system.

As Table 1 illustrates, however, information rates do describe performance

capacities. To reinforce this idea, consider the design of experiments used to

evoke the appropriate data. Above, I said that the coding efficiency of a neu-

ron is the ratio of its active firing rate, in the presence of a stimulus, to an

information theoretic measure of the default variability in the neurons behav-

ior. Designing an experiment that evokes the relevant data requires that we

understand both the neurons default behavior when it is not engaged in a task,

as well as its behavior when it is optimally active, helping to process the kind of

stimulus to which it is best attuned. So, if we are to correctly estimate the in-

formation rate of a perceptual neuron, our choice of stimulus matters crucially.

In a discussion of information theory as applied to vision in particular, Dayan

and Abbott say:

The basic assumption is that these receptive fields serve to maxi-

mize the amount of information that the associated neural responses

convey about natural scenes in the presence of noise. Information

theoretic analyses are sensitive to the statistical properties of the

stimuli being represented, so the statistics of natural scenes play an

important role in these studies (Dayan and Abbott, 2001, p. 135).

So, if we want an accurate estimate of the neurons information rate, we need

to design an experiment in which the kind of stimulus we employ corresponds to

the biological function of the neuron from which we record. The relevant notion

of function here is the kind that is applicable in evolutionary explanations of

biological traits, sometimes known as etiological functions. A trait has a function

in this sense if it has played the right sort of fitness-enhancing causal role in the

organisms ancestral lineage.
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This idea is bound to provoke skepticism. If neural information rates can

only be estimated accurately if the researchers know what role the neural signal

played in the evolutionary history of the organism, then we might as well pack

it in and go study something more tractable. The situation is more hopeful

than it looks, however. As is the case elsewhere in biology, functional ascrip-

tions are not typically made on the basis of detailed knowledge of the historical

record. Instead, they are grounded in adaptationist reasoning (Dennett, 1996).

In perceptual neuroscience, adaptationist reasoning yields a simple principle:

the stimulus that best reflects the etiological function of the neuron is the one

that maximizes the mutual information between stimulus and spike train. This

optimality assumption allows neuroscientists not only to fine tune their under-

standing of neural function, but in some cases, it allows them to discover func-

tionally appropriate stimuli in the first place. For example, one can generate

artificial stimuli with a range of statistical parameters, and then use principal

components analysis or other bottom up search techniques to identify which

parameter settings lead to maximal informational performance (Sharpee et al.,

2004).

The lesson here is that estimates of neural information transmission are

about the performance capacity of the neuron; and to measure the performance

capacity of a neuron, you have to create the right experimental conditions.

Creating those conditions forces you to draw on an understanding of the what

task the neuron is trying to perform. Because the ontological view is blind to

the function of a neuron, it is not the conception of information we need to

interpret the scientific content of neural information rates.

5 The Reification View

Because estimates of neural information rates are highly sensitive to experimen-

tal design and choice of stimulus, its scientific proponents are often anxious to

demonstrate that their methods are objective, and empirically sound. They

want to show that the amount of information flowing through a neural circuit

is not just a matter of the scientists perspective on the situation. However, the

desire to show that informational quantities are genuinely empirical sometimes

leads to an awkward sort of reification. In the context of a paper on information-

theoretic approaches to retinal physiology, Meister and Berry, well-established

practitioners in the field, make the following remark.
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It has long been recognized that the essential substance transmitted

by neurons is not electric charge or neuro-chemicals, but information.

In analyzing a neural system, it is essential to measure and track the

flow of this substance, just as in studies of the vascular system one

might want to measure blood flow (Meister and Berry, 1999).

This remark is such an obvious exaggeration that one is forced to wonder

whether the authors really meant it. Nevertheless, the claim warrants closer

attention. Although it may be obvious that it is misleading, it is not entirely

obvious what makes it so. In my view, the analogy between information and

blood is flawed primarily because it suggests that information is material stuff,

which it is not. Blood can be removed from the body and nevertheless continue

to deserve its status as blood. (Blood banks would be pointless if this were not

so.) Action potentials are not like this. They play the role of an informational

signal when they are embedded in an organism that moves about in the world.

In vivo, an action potential is just a burst of electrochemical activity. There’s

nothing particularly informational about it.

This is not merely an intuitive judgment. The quantity of information car-

ried by a signal depends essentially on that signal being incorporated into a

functional system capable of reading it, as well as on the manner in which it is

read. To see this, consider an example from communications technology. Last

year, the National Security Agency in the United States discovered that terror-

ists were communicating with one another via codes embedded in JPEG files.

A picture of a puppy would be sent to the attacker, but deep in the bit file was

pattern that could be decoded into natural language. How much information

did the file contain? From the perspective of the modem used to download the

file, it might have been exactly 2Mb. But from the perspective of the would-be

terrorist, it could have been just 1 bit. It might, for example, have resolved the

uncertainty between just two options: “attack” and “wait.”

The lesson implicit in this example is that the quantity of Shannon infor-

mation attached to a signal is not determined entirely by its intrinsic material

properties. It depends also on the capacity of a receiver to recognize the signal,

and the manner in which it is recognized. This makes informational quanti-

ties, unlike quantities of material substances, inherently functional. Blood has

a function of course, but, unlike information, its quantity does not depend on

whether it is measured in a functional context.
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How do neuroscientists take this receiver relativity into account when esti-

mating neural information rates? Once again, an adaptationist perspective is

called for. Adaptationism gives us reason to think that a spike train which is

finely calibrated to a perceptual stimulus is not just a wasted burst of energy.

We assume, and in some cases have neuroanatomical evidence to believe, that

downstream receiver mechanisms are standing by; ready, at least on some oc-

cassions, to make use of the signal in the service of the organisms behavioral

goals.

6 A Functional Analysis of Shannon Informa-

tion

Weve seen that the claim that a neural spike train transmits Shannon informa-

tion cannot be interpreted as the rather bland claim that the time course of

the spike train just happens to be correlated with some other empirical prop-

erty. Nor can it be interpreted as the rather mysterious claim that spike trains

constitute a special sort of material substance that is the hidden target of neu-

roscientific investigation. So how should we interpret it? What positive account

can we provide, given the discussion thus far?

One lesson that emerged form the discussion of the ontological and reifica-

tion views of Shannon information was that neural information rate claims rely

on adaptationist reasoning. Consequently, their scientific content includes an

ineliminable functional commitment: they came to be the way they are for a

reason. Another problem with the two analyses discussed above was that they

lacked any clear conceptual relationship to the definitions introduced in Section

3. My positive analysis is designed to remedy these shortcomings. On my view,

the claim that a neuron transmits Shannon information should be interpreted

to mean (i) that the neuron functions as a component in a semantic system, (ii)

that the functional capacities of the semantic system depend on the degree to

which it can exploit variations in the physical states of its component parts, and

(iii) the efficiency of that exploitation can, at least in principle, be measured.

This analysis shows how the relatively abstract idea behind information the-

ory - entropy - can have functional significance in a biological system. Recall

from Section 3 that the entropy of an informational source is proportional to

the number of physical states it can realize. From an adaptationist perspective,

the constant variation in the output signal of neurons must contribute to the
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brains ability to process semantic information about what is going on in the

environment and what to do about it. The more entropy the average neuron

can express, therefore, the more semantic processing the brain can achieve with

its relatively fixed stock of physical resources.

From this perspective, the Shannon properties of individual neural spike

trains can help explain how a brain manages to process so much semantic infor-

mation. It also helps us to think more clearly about the relationship between

information and evolution. If neurons only carry Shannon information, and if

Shannon information has nothing at all to do with semantic information, one

might reasonably wonder why neurons would have evolved such impressive rates

of coding efficiency. As Peter Godfrey-Smith has pointed out, there is no reason

for an informational system to evolve unless the information it carries is worth

getting across.

It is true that much of information theory can proceed without pay-

ing attention to the specific messages being sent over an information

channel, but there is no point in maintaining and using the channel

unless the messages sent do bear on something in the world, and can

guide actions or inferences of some kind (Godfrey-Smith, 2011).

Although this passage is drawn from a discussion that is not particularly con-

cerned with neuroscience, Godfrey-Smith’s subtle formulation is exactly right

for our purposes. We can say with considerable confidence that spike trains

bear on something in the world and also that they guide actions or inferences,

without committing ourselves to the view that there is some particular chunk of

semantic content that a spike train has been selected to convey. The informa-

tional properties of individual neurons were selected, rather, in order to increase

the efficency of the semantic processing that becomes visible only at a higher

level of neural organization.

If this interpretation is correct, the bifurcation view discussed in the in-

troduction cannot be quite right. The bifurcation view says that semantic

properties are irrelevant to understanding the spiking behavior of single neu-

rons. But according to the functional analysis just suggested, claims about the

rate of Shannon information only make sense in a context in which semantic

information is being transmitted. This claim is not meant to suggest that all

applications of information theory will involve semantic systems. Information

theory is a branch of applied mathematics, and has a staggering range of inter-

esting applications. For example, it is used to determine how hugely complex
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genomic data sets can be represented most efficiently, in order to simplify com-

putation (Vinga, 2013). Set cases like this one aside. The claim I am making is

that if an informational rate is intended as a description of a functional capacity

within a system that uses information, then semantic properties must also be

involved.

7 On the Conceptual Fecundity of Shannon In-

formation

To this author, the suggestion that information in biological systems can be

measured is as inspiring as it is bold. The neuroscientists working in this area are

saying, at least by implication, that we can bring quantitative rigor to the study

of meaning and representation in animals. How could philosophers fail to take

interest in a claim like that? It is surprising, therefore, that the philosophical

literature includes precious little discussion of the topic.4 One reason for the

lack of interest in working out the philosophical implications of this area of

science may have to do with the fact that information theory has its roots

in computer science and communications technology, rather than biology. In

computer science, there is no significant danger that we will be mistaken about

what counts as an elementary symbol. There is no need to worry about whether

you have correctly understood the functional decomposition of the information

processor before thinking through coding strategies. What counts as a symbol

is underwritten by engineering conventions that we created, and to which are

baked into the way in which we learn to handle questions about information-

theoretic properties. If you consult a book on image compression algorithms, for

example, there will be plenty of discussion the properties Shannon introduced,

but little or nothing on the manner in which the image is stored in hardware.

One can restrict ones attention to mathematical transformations of bit strings

since there is, at least quite often, no need to know anything about the physical

characteristics of the machine that will execute the algorithm.

This is very much unlike the world of biology, where basic questions about

how semantic signals are encoded remain open. If it turns out that, as some

neuroscientists believe, neurobiological information transmission occurs in large

part the dendritic level rather than at the level of spiking neurons (Ovsepian

and Dolly, 2011), then the mainstream understanding of functional decomposi-

4But see Rathkopf (2017) for a recent exception.
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tion of information processing in the brain will be wrong. If that is the case,

our current estimates of the rate of information transmission will also be wrong.

Moreover, the adaptationist principles that neuroscientists use to reason about

the functional decomposition of neural signaling systems are themselves open

to challenge and revision. For example, the optimality assumption suggested in

Section 3 stated that the stimulus that best reflects the etiological function of

a neuron is the one that maximizes the mutual information between stimulus

and spike train. Other principles are possible, however. For example, Levy

and Baxter (2002) suggest that the quantity nature actually tries to maximize

is the ratio of mutual information to metabolic cost. The lesson here is that

if we accept that semantic information and Shannon information are not en-

tirely independent from one another in the domain of biological signaling, the

study of information theoretic properties in the brain becomes both more error

prone, and also far more philosophically interesting than we might otherwise

have thought.
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