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Evaluating the cognitive capacities of large language models (LLMs) requires overcoming
not only anthropomorphic but also anthropocentric biases. This article identifies two types of
anthropocentric bias that have been neglected: overlooking how auxiliary factors can impede
LLM performance despite competence (auxiliary oversight), and dismissing LLM mechanistic
strategies that differ from those of humans as not genuinely competent (mechanistic chauvinism).
Mitigating these biases requires an empirical, iterative approach to mapping cognitive tasks to
LLM-specific capacities and mechanisms, achieved by supplementing behavioral experiments
with mechanistic studies.

1. Introduction

What cognitive competencies do large language models (LLMs) have, if any? That is a
question of immense theoretical and practical importance. It is also formidable, as we
lack an appropriate methodological framework to answer it. The rigorous methodol-
ogy of experimental psychology (e.g., controlled experiments, counterbalanced stimuli)
provides an excellent foundation for investigating the cognitive capacities of LLMs.
However, we cannot transfer its paradigms whole cloth, since inferences from these
paradigms in human studies rest on background assumptions about cognitive architec-
ture that may not hold for LLMs.1 As a result, naively applying these methods to LLMs
risks succumbing to both anthropomorphic and anthropocentric biases. Anthropomor-
phic bias involves attributing human qualities to LLMs without justification – being too
eager to recognize the capacities of an LLM as instances of our own. Anthropocentric
bias, conversely, entails evaluating LLMs by human standards without justification, and
refusing to acknowledge genuine cognitive competence that differs in substantive ways
from our own. We aim to clarify this challenge, offering a path forward for resolving
disputes and advancing our understanding of LLMs’ capacities.2

Action editor: {action editor name}. Submission received: 18 June 2025; accepted for publication: 02 August
2025.
1 See Ivanova (2025) for a related discussion.
2 We do not aim to discuss whether LLMs should be designed to have human-like capacities, but how to

fairly assess and compare their capacities to human cognition.
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2. The performance/competence distinction

The distinction between competence and performance (Chomsky 1965) plays a crucial
role in cognitive science. Competence if often defined as the system’s internal knowl-
edge underlying a particular capacity, and performance as the observable behavior of a
system exercising it (Firestone 2020). For a competent system, then, performance is the
external manifestation of competence. This formulation allows for cases where perfor-
mance and competence diverge. For instance, a student cheating on a test demonstrates
performance success without competence, while a knowledgeable student failing due
to anxiety shows performance failure despite competence. Such examples might invite
criticism that applying this distinction to LLMs is inherently anthropomorphic, by
relying on a concept of knowledge proper to humans. We can avoid this concern with
an alternative formulation. In an experimental context, performance refers to how closely
a system’s behavior aligns with some normative standard of success on a task, while
competence refers to system’s computational capacity to meet that normative standard
under fair testing conditions.3

It is widely recognized that there is a double dissociation between performance and
competence, and that this distinction gives us reason to be wary not only of naive in-
ferences from good performance to competence, but also from bad performance to lack
of competence. Although inferences about competence from performance are drawn
in both directions in human experimental psychology, they are drawn in only one
direction when studying LLMs: from bad performance to lack of competence. Without
adequate justification, this asymmetry is suggestive of anthropocentric bias. We suspect
that this reflects the reasonable desire to temper the opposite bias – anthropomorphism,
the tendency to ascribe human-like capacities to LLMs without sufficient evidence.4

However, fighting one bias by entrenching another won’t foster impartiality (Buckner
2021). Instead, as the philosopher Elliot Sober once remarked in a discussion of an-
thropocentric reasoning in comparative psychology, “the only prophylactic we need is
empiricism” (Sober 2005, p. 97).

3. Taxonomy of Anthropocentric Bias

A pattern of reasoning is biased when it lacks adequate justification. Since justification
can fail in different ways, each failure corresponds to a distinct variety of anthropocen-
tric bias with its own methodological challenges. We outline a taxonomy of these biases
and strategies to mitigate them.

3.1 Auxiliary oversight

The first kind of bias, which we call auxiliary oversight, is the tendency to overlook the
persistent possibility that an LLM’s performance failures on a task designed to measure
competence C may be caused by auxiliary factors rather the lack of competence C.
This bias arises from a failure to account for the different cognitive profiles of LLMs

3 This is meant to exclude ideal conditions where a system simply gets “lucky”—for example, where the
correct answers in a test happen to be high-frequency tokens. Rather, fair testing conditions are those
where cognitive mechanisms for the core competence can operate without impediment from auxiliary
factors.

4 For an example of the strong anti-anthropomorphism sentiment, which we suggest may motivate this
counter-reaction, see Bender (2022).
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and humans, which can lead to flawed experimental designs in two ways. First, by
providing LLMs with less support than humans for the same task, creating an unfair
comparison. Second, by designing tasks with components that are trivial for humans
but non-trivial for LLMs due to architectural differences. In both cases, the assumption
is flawed because it overlooks the possibility that auxiliary factors caused the perfor-
mance failure.

In human psychology, auxiliary factors are often illustrated by cases such as the
student described above: the student’s nervousness negatively impacts her performance
on the test, even though she has the relevant knowledge and would have otherwise
done well. Applying this concept to LLMs might seem anthropomorphic, as it relies
in the human context on the existence of a complex, semi-modular faculty psychology,
where limitations in one faculty might bottleneck performance in another. Since LLMs
presumably do not have psychological faculties in that sense, citing auxiliary factors as
causes of LLM performance failure may seem like a nonstarter.

However, auxiliary factors can and do influence LLM performance. To understand
their role, it is helpful to recall that every mechanistic explanation involves a degree of
idealization: it picks out a subset of the many causal influences on behavior. In doing so,
it implicitly assumes that the remaining factors will either remain stable or exert only
minor influence. When that assumption fails, performance may degrade in ways that do
not reflect a lack of underlying competence. Sometimes, failure results from a missing
enabler – a subsystem or context the subject relies on but does not receive. For example,
in the mirror test for self-recognition, an animal may fail not because it lacks the capacity
for self-representation, but because it lacks motivation to remove a visible mark. In other
cases, failure stems from interference by competing mechanisms, as when a bilingual
child struggles with a vocabulary test in one language due to lexical interference from
the other. Finally, performance may be limited by how much processing the subject
is permitted or able to perform – as when a student asked to solve a math problem
mentally fails, but succeeds with pen and paper. These scenarios violate the idealized
assumptions built into our explanatory models. Auxiliary factors are not part of the
competence being tested, yet their influence can mask or suppress it. Ignoring them
risks conflating failure of performance with failure of cognition.

In LLMs, we can distinguish at least three kinds of auxiliary factors. The first and
most familiar kind are auxiliary task demands. Hu and Frank (2024) provide a helpful
illustration of such demands in evaluating whether language models are sensitive
to syntactic features like subject-verb agreement. They compare two approaches: (1)
prompting the model to make explicit grammaticality judgments, and (2) directly com-
paring the probabilities the model assigns to minimal pairs that vary the target feature.
For the metalinguistic approach, they use prompts such as: “Here are two English
sentences: 1) Every child has studied. 2) Every child have studied. Which sentence
is a better English sentence? Respond with either 1 or 2 as your answer.” They then
analyze both the output and the probabilities assigned to ‘1’ and ‘2’. For the direct
estimation approach, they prompt LMs with minimal pairs such as “every child has
studied” and “every child have studied”, and compare the log probabilities assigned
to each string. A model is considered successful if it assigns a higher probability to
the grammatical sentence. Across model sizes and datasets, Hu and Frank find that
direct probability estimation yields results that differ from and are often better than
the metalinguistic approach. They conclude that metalinguistic prompting introduces
an auxiliary task demand - the ability to generate explicit grammaticality judgments -
that is irrelevant to the underlying syntactic competence of interest. In contrast, direct
probability estimation more validly measures the target capacity. We concur with their
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assessment. What makes it a genuine demand is the fact it degrades performance. What
makes it genuinely auxiliary is the fact that metalinguistic judgment is conceptually
independent of the psychological construct of interest, which is the capacity to track
grammaticality.

Neglecting auxiliary task demands can lead inferences about competence astray.
Such negligence is compounded in comparative studies with mismatched experimental
conditions, resulting in divergent auxiliary task demands for LLMs and human sub-
jects. This concern is highlighted by Lampinen (2023)’s case study comparing human
and model performance on recursively nested grammatical structures, in response to
prior work by Lakretz et al. (2022). Lakretz et al. found that humans outperformed
language models on challenging long-distance subject-verb agreement dependencies
in embedded clauses. However, Lampinen notes that human subjects were given sub-
stantial instructions, training and feedback to orient them to the experimental task,
while models were evaluated “zero-shot” without any task-specific context. The dis-
crepancy in experimental conditions confounds the comparison: the additional context
provided to humans but not models can be interpreted as imposing weaker auxiliary
task demands on humans than models. To level the playing field, Lampinen tested
LLMs on the same task by providing it with prompts containing a few examples,
intended to match the orienting context given to human subjects. With this modest task-
specific context, LLMs perform as well as or better than humans, even on challenging
sentences with deeper nesting than those tested in humans. In a similar vein, Hu
et al. (2024) re-examined claims that LLMs fail at basic grammaticality judgments and
found that apparent failures were an artifact of an experimental design that conflated
linguistic competence with the auxiliary demand of metalinguistic reasoning. Once this
demand was removed in favor of a more direct probabilistic evaluation, the models’
performance was aligned with that of human subjects. These cautionary tales illustrate
how mismatched experimental conditions across humans and models – with respect to
instructions, examples, motivation, and other factors – can distort comparisons of their
capacities. Meaningful comparative evaluation requires that humans and models are
subject to similar auxiliary task demands, just as comparative psychology strives for
“species-fair comparisons” across humans and animals.

Auxiliary task demands are challenging in LLM evaluation because tasks that are
considered trivial for humans may not be trivial for an LLM. The classification of a
task as trivial depends on whether the cause of performance failure is associated with
the parts and operations that explain its success when things go well. If the cause of
performance failure is related to other parts of the system that do not contribute to its
success in normal circumstances, then it is a non-trivial task demand relative to that
system. This problem is exemplified by a recent debate about analogical reasoning.
Webb, Holyoak, and Lu (2023) showed that LLMs can match or surpass average hu-
man performance on various novel analogical reasoning tasks, including letter-string
analogies such as [ABC] → [ABE], [MNO] → [?]. However, Lewis and Mitchell (2024)
found that performance deteriorates when using a variant with a permuted alphabet.
They interpret this drop as evidence that LLMs lack general competence in analogical
reasoning. In response, Webb, Holyoak, and Lu (2024) argue that solving the permuted
task requires counting letter indices, which LLMs cannot do effectively without tools
like a Python interpreter (see Chang and Bisk 2024). Counting, they contend, imposes an
auxiliary task demand that undermines the inference from poor performance to a lack
of analogical competence. While humans may not assign numerical indices explicitly,
they still must track how many times to apply successor or predecessor operations. The
permuted alphabet task requires counting positions relative to the provided key—an
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auxiliary demand that is trivial for a human with the key in view but difficult for
an LLM that cannot reliably count without tools. This asymmetry in the impact of
counting-related demands could explain the performance gap on counterfactual letter-
string tasks.

Another kind of auxiliary factor is what we call test-time computational bottle-
necks—variable constraints on the computations a model can perform at inference time.
This is distinct from an auxiliary task demand, which imposes an additional, concep-
tually separate task. A computational bottleneck, by contrast, is a resource limitation
on the primary task itself. This is most apparent in the context of test-time scaling, a
family of techniques for dynamically allocating compute during inference. The simplest
example involves prompting a language model to generate a “chain of thought” (CoT)
before answering (Wei et al. 2023). A helpful analogy is the difference between solving a
math problem with and without pen and paper. Prompting an LLM for a direct answer
is loosely analogous to asking for a mental calculation, while allowing it to generate
a CoT is loosely analogous to providing pen and paper for intermediate steps. When
asked for a direct answer, Transformer models are fundamentally limited; theoretical
work shows they cannot solve many sequential reasoning problems in a single forward
pass (Merrill and Sabharwal 2024). Prompting them to “think step by step” triggers the
generation of intermediate tokens that scaffold reasoning and substantially improve
performance (Kojima et al. 2023). In theory, each additional decoding step expands
the model’s expressive power (Merrill and Sabharwal 2024). In practice, mechanistic
analyses confirm that models use CoT tokens actively, drawing on multiple circuits to
extract information from intermediate steps and assemble a final answer (Dutta et al.
2024). The stark difference in performance with and without CoT shows that latent
capabilities may go unexpressed when models are prompted to answer directly.

The influence of test-time computational bottlenecks is demonstrated more starkly
by “large reasoning models” (LRMs), such as OpenAI o1 or DeepSeek R1, which are
specifically trained to benefit from test-time scaling. RLMs are language models that
undergo an additional post-training stage, which typically includes supervised fine-
tuning on curated examples of CoT reasoning, as well as reinforcement learning on veri-
fiable rewards in formal domains. At inference time, the computational budget for these
models can be dynamically controlled by modulating the number of “thinking” tokens
they generate before providing an answer. For example, Muennighoff et al. (2025) found
that increasing the “thinking” token budget would increase performance on difficult
math and science benchmarks. In this case, it would be premature to conclude that
performance failures with a low “thinking” token budget shows that the model lacks
competence in the task domain. For the very same model and task, performance can
switch from failure to success simply by letting the model generate a longer CoT.

The notion of computational bottlenecks extends beyond the generation of external
intermediate tokens to scaffold computations. Experimental language models designed
with an intrinsic capacity for test-time scaling in latent space provide an even clearer
illustration of the phenomenon. For example, Geiping et al. (2025) introduce a recurrent
architecture that allows the model to “think” by iteratively refining its internal state in
a continuous latent space, without ever needing to verbalize intermediate steps. They
found that their model’s performance on reasoning benchmarks improved when they
increased the number of latent iterations at test time. For the very same problem, the
model might fail with a few latent iterations but succeed with dozens. This demon-
strates a purely computational bottleneck, disentangled from the auxiliary demand
of articulating a chain of thought in natural language. To illustrate this phenomenon,
we ran the latent reasoning model from Geiping et al. (2025) on examples from the
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Winogrande commonsense reasoning benchmark. The task involves filling in the blank
in sentences like “I tried to make mini lamps by using glow sticks in mason jars, but had
to get larger jars because the ___ were too big.” Initially, with only a few latent steps,
the model assigns a higher log-likelihood to the incorrect completion, “jars”. However,
as the number of latent steps increases, the log-likelihood for the correct completion,
“glow sticks”, increases to become the dominant prediction.5 The model’s initial failure
is not evidence of its inability to solve the problem, but rather the consequence of a task-
independent computational bottleneck. Its eventual success reveals a latent competence
that is only expressed when sufficient computational resources are allocated at test time.

Finally, a third kind of auxiliary factor is what we might call mechanistic interference,
according to which a network learns a mechanism for solving a certain kind of problem,
but the activity of that mechanism is interrupted by another, conceptually distinct pro-
cess. Recent work on Transformer models trained on modular addition tasks provides
insights into how a model’s performance can be impacted by such auxiliary factors.
Nanda et al. (2022) show that even after a Transformer has formed a generalizable
circuit that implements an algorithm to solve modular addition, its test set performance
can still be impeded by previously memorized input-output mappings until a later
“cleanup” phase in which this rote memorization is removed. This shows that the
presence of a general algorithm does not guarantee strong test set performance when
there is interference from auxiliary computations. Zhong et al. (2023) further show that
even in fully trained networks that have “grokked” the task, there can be multiple
concurrent circuits that interact to solve the task and potentially interfere with each
other. For instance, a Transformer might contain one circuit implementing a general
algorithm alongside another implementing a more heuristic algorithm for the same
task. The model’s overall performance could then be negatively impacted by the causal
interference of the lesser algorithm, even though the latent competence to solve the task
is present.

The distinction between mechanistic interference and auxiliary task demand lies
in the source of the failure: a task demand is an extrinsic feature of the experimental
setup, while mechanistic interference is an intrinsic property of the model’s internal
processing, where two or more circuits produce conflicting outputs. One might object
that this is an overly charitable interpretation; perhaps the interference simply reveals
that the model’s competence is fragile. However, the mechanistic separability of the
competent circuit from the interfering process suggests otherwise. The point is not that
the model is infallible, but that a general, competent mechanism exists and its function
can be isolated, even if its output is sometimes suppressed. These findings illustrate that
a model’s performance on a task can be disrupted by auxiliary computations that are
conceptually distinct from the core competence required for the task.

3.2 Mechanistic chauvinism

Mechanistic chauvinism is the tendency to assume that even when LLMs match or
exceed average human performance, any substantive difference in strategy counts as
evidence that the model’s solution lacks generality. In slogan form: all cognitive kinds
are human cognitive kinds.6 Whenever an LLM arrives at a solution through a different

5 Figure available at https://github.com/raphael-milliere/latent-test-time-scaling.
6 This bias resembles what Buckner (2013) calls “anthropofabulation”—a combination of (i) human-centric

definitions of psychological terms with (ii) an exaggeration of human cognitive abilities. Mechanistic
chauvinism differs from anthropofabulation in that it focuses on process rather than semantics or
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computational process than humans use, the mechanistic chauvinist concludes that the
LLM lacks genuine competence, regardless of how well it performs.

However, this line of thinking risks obscuring the real capabilities of LLMs. Con-
sider a model that learns a general algorithm for addition, rather than simply mem-
orizing a large set of specific addition problems and their solutions. Now suppose
that humans use a somewhat different algorithm for addition. The mere fact that the
LLM’s approach differs from the human approach does not mean that the LLM lacks
real competence at addition. What matters is whether the LLM has learned a robust,
generalizable strategy. Indeed, we can easily imagine an LLM outperforming humans
at addition while using a distinctly unhuman-like computational process.This concern
is arguably reflected in ongoing debates about the linguistic capacities of LLMs. Current
models are not only proficient at generating grammatically well-formed sentences, but
can also match human performance on judgments of syntactic acceptability, often align-
ing closely with human intuitions (Hu et al. 2024). Yet, many linguists in the generative
tradition, would argue that LLMs lack genuine syntactic competence (Chomsky 1965;
Chomsky, Roberts, and Watumull 2023; Everaert et al. 2015). From this perspective, their
success stems not from an internal knowledge of hierarchical syntactic rules, but from
their nature as massively scaled statistical models trained to predict the next word.
This conclusion, however, is challenged by a growing body of mechanistic evidence
suggesting that LLMs do learn and represent hierarchical syntax internally, even if the
computations that produce these representations differ from those posited in formal
linguistic theories (Millière forthcoming). This debate thus exemplifies mechanistic
chauvinism: if competence is defined by the instantiation of a specific computational
architecture hypothesized in humans, then LLMs are deemed incompetent by fiat—
thereby dismissing both their behavioral success and the alternative, learned mecha-
nisms that support it.

3.3 An objection

We now anticipate an objection to our discussion of mechanistic chauvinism: since
the only indisputable examples of language-driven cognition are human, and since
the capacities of LLMs are acquired through training on human-produced data, isn’t
human cognition the most appropriate yardstick for studying LLMs? Our response is
that it depends on how the yardstick is used. While we can – and presumably must –
begin our investigation of LLM competencies by comparing them to our own, the role
of human cognition as a benchmark can be overstated in two ways. First, the human
competencies we use as reference points should be regarded as what philosopher Ali
Boyle calls “investigative kinds” (Boyle 2024) - they serve as an initial search template,
but not as necessary conditions for cognitive status. Second, questions of the form “Do
LLMs have cognitive competence C?” should be treated as empirical questions. Though
this may seem self-evident, it is a principle that is easy to violate, particularly when we
assume that facts about implementation are among the distinguishing features between
competence A and competence B. To preserve the empirical character of debates about
the capacities of LLMs, we must focus on the appropriate level of analysis. Following
Marr’s classic framework, this means focusing on the computational and algorithmic
levels, where we ask both what the system computes and which algorithms enable it to

performance. Nevertheless, both forms of bias risk setting standards that no non-human system could
meet.
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perform that computation. Defining competence at the physical or implementational
level—for example, by requiring a biological substrate—would make the question of
whether an LLM could possess a human-like competence non-empirical by definition.
Therefore, our investigation explicitly sets aside facts about physical implementation.

The investigation of cognitive capacities in LLMs is best viewed as an iterative
process in which our conception of LLM competencies, and of the mechanisms that
implement them, mutually inform and revise each other. Solving the challenge of
mapping cognitive tasks to capacities often involves consideration of the underlying
mechanisms (Francken, Slors, and Craver 2022). But to home in on the mechanisms
responsible for a particular competence, we must make principled decisions about
the level of abstraction at which to characterize the mechanism and about how to
delineate the boundaries of the mechanism itself. These decisions, in turn, depend
on how we conceptualize the cognitive phenomenon we are trying to explain. What
results is an investigative process in which our characterization of cognitive tasks, our
ontology of capacities, and our understanding of mechanisms evolve in tandem. In the
case of LLMs, this process may lead us quite far from our initial starting point, and
may ultimately produce a novel ontology of cognitive kinds, optimized for explaining
the distinctive strengths and weaknesses of machine intelligence rather than human
intelligence. In this way, the iterative nature of the investigative process allows it to
drift away from its anthropocentric origins.

4. Conclusion

Like humans, LLMs can be right for the wrong reasons. However, they can also be
wrong for the wrong reasons. Auxiliary factors can suppress performance in ways that
obscure latent competence. While anthropomorphism has received substantial critical
attention, anthropocentric bias has gone largely unexamined. We have argued that it
poses a serious obstacle to the objective assessment of LLM capacities, and we offered a
taxonomy of its forms to help guide future research.

While carefully designed behavioral experiments are the primary means of identi-
fying performance failures, mechanistic interpretability techniques are uniquely suited
to adjudicate between competing hypotheses about the causes of these failures. For
instance, when behavioral evidence is ambiguous, intepretability methods can, in prin-
ciple, help distinguish whether a failure is due to a lack of a competent circuit or due to
an auxiliary factor (such as mechanistic interference) suppressing an existing competent
circuit. As such, supplementing behavioral with mechanistic evidence is useful way to
counteract auxiliary oversight.

The role of mechanistic interpretability in addressing mechanistic chauvinism is
more nuanced. It is possible to decode a feature or circuit of interest from a large
neural network even if that feature or circuit does not significantly contribute to the
network’s functionality (Makelov et al. 2024; Huang et al. 2023). So there is a risk
of anthropomorphic projection in mechanistic interpretability research. Nevertheless,
there are examples of robust information processing mechanisms that differ from the
ones humans typically use. Mechanistic interpretability research can help identify these
mechanisms. When they are discovered, we should not dismiss them simply because
they deviate from the human case. Doing so would foreclose the possibility of under-
standing artificial cognition on its own terms.
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