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“But in the practice of science,

knowledge is an affair of making sure,

not of grasping antecedently given

sureties.”

John Dewey1

1[Dewey, 1958, p. 154]. [Emphasis in original.]
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Abstract

Generative AI increasingly supports scientific inference, from protein structure prediction to weather forecasting.

Yet its distinctive failure mode, hallucination, raises epistemic alarm bells. I argue that this failure mode can be

addressed by shifting from data-centric to phenomenon-centric assessment. Through case studies of AlphaFold and

GenCast, I show how scientific workflows discipline generative models through theory-guided training and confidence-

based error screening. These strategies convert hallucination from an unmanageable epistemic threat into bounded

risk. When embedded in such workflows, generative models support reliable inference despite opacity, provided they

operate in theoretically mature domains.

Word count: 8,331 Keywords: generative AI, hallucination in AI, scientific AI, AI reliability, reliabilist epistemology,

AI epistemology, protein structure prediction, weather forecasting
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1 Hallucination as a threat to reliability

In recent years, generative AI has become deeply embedded in scientific practice. It is now used to synthesize data for

climate models [Kadow et al., 2020], to map phase transitions in novel materials [Arnold et al., 2024], and to predict

molecular interactions for drug discovery [Sidhom et al., 2022]. Unlike classificatory AI models, generative AI models

produce outputs that are highly detailed and informationally rich. That richness makes them epistemically valuable, but

also leaves them susceptible to a new kind of error that has come to be known as “hallucination” [Ji et al., 2023; Sun

et al., 2024].

As a first pass, hallucinations2 can be characterized as errors that are not merely inherited from the training data, but

are, in some sense, produced by the model itself. This claim is substantive: not all errors count as hallucinations. A

corrupted measurement or a mislabeled datapoint is an error, but not a hallucination. I return to a more precise analysis

in Section 3, but even this initial sketch helps explain why the phenomenon demands attention. It is natural to worry

that any model prone to hallucination may not be trustworthy—and indeed, the epistemic risks are serious. AlphaFold

3, among the most celebrated generative models in science, has been shown to produce detailed molecular structures

where none exist [Abramson et al., 2024]. GANs used in medical imaging have introduced phantom anomalies—a

fracture-like line in an unbroken bone, or a lesion in healthy tissue [Shin et al., 2021].

These are not just rounding errors. Undetected, hallucinations can lead researchers and clinicians toward serious

mistakes in inference and decision-making. In fact, the epistemic challenges posed by hallucinations run deeper than

these examples suggest. There is reason to think that hallucinations are inevitable byproducts of the mechanisms of

generative inference. The intuition behind this claim is that training such models involves a fundamental tradeoff

between novelty and reliability [Sajjadi et al., 2018; Sinha et al., 2023; Xu et al., 2024]. A model constrained to strictly

mirror its training data may be reliable but incapable of generating novel insights. Allowing a model to extrapolate, by

contrast, enables novelty but invites fabrication.

Another reason that hallucinations threaten reliability is that they are sometimes difficult to detect [Ji et al., 2023;

Bubeck et al., 2023]. This is not always the case. When we have thorough background knowledge of the target

phenomenon, hallucinations can be easy to spot. For example, earlier versions of DALL-E and Stable Diffusion often

2The term invites a misleading comparison to human perceptual experience. Generative AI models do not consciously perceive
the world, let alone misperceive it. Nevertheless, since the term is already widely used in the technical literature, insisting on a
replacement would only introduce a cognitively costly neologism into an already difficult discussion.
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generated images of human hands with six fingers [Wang et al., 2024]. But scientific AI operates at the frontiers of

human knowledge, where error detection is intrinsically more difficult. Where our background knowledge is weakest,

errors are most likely to go undetected. And the longer they remain undetected, the more they threaten to derail any

decision-making processes based on model outputs.

Drawing these observations together, it seems that hallucinations are, in at least some cases, substantive, inevitable,

and difficult to detect. Worse still, deep learning models are epistemically opaque [Humphreys, 2009; Creel, 2020]. In

traditional closed-form models, evidence of reliability is often grounded in knowledge of how parameters relate to the

properties of the target system. When errors arise, they can be traced to specific parameters and corrected. In DNNs, by

contrast, it is unclear whether individual parameters represent anything at all.

This combination of opacity and model-generated error creates what I will call the diagnostic problem: once we

discover a hallucination downstream, how can we use that knowledge to systematically improve the model? In normal

scientific practice, error correction is iterative. When a model produces questionable results, researchers trace the

error back to specific parameters, adjust them based on their representational role, and thereby reduce the probability

of similar errors in future applications. Opacity blocks precisely this diagnostic workflow. Without knowing which

parameters are responsible for an error, we cannot learn from our mistakes in the systematic way science typically

demands. If we cannot check the representational fidelity of individual parameters, how might we justify using these

models at all? Reliabilist epistemology [Goldman, 1979; Lyons, 2019] offers a straightforward answer: we observe its

track record. Instead of explaining why a model succeeds, we infer its reliability from past performance. This approach,

which Duede [2023] calls brute inductivism, reduces scientific epistemology to an accounting exercise.

Suppose a model achieves high accuracy on benchmarks or aligns well with historical data. Researchers then

infer—perhaps naively—that the model will be reliable in future applications. But as Duede’s unflattering label

suggests, brute inductivism is an inherently precarious strategy. Past success offers no guarantee of future performance,

particularly in novel settings [Grote et al., 2024]. Nevertheless, these models have already demonstrated their ability to

outperform traditional approaches in all sorts of important predictive tasks. The real challenge, then, is not whether

generative AI should be used in science, but how it can be used responsibly.

Addressing this challenge requires greater clarity about what counts as a hallucination. Existing definitions, whether

formal or informal, tend to evaluate model outputs primarily by their relationship to training data. But, as I will argue in
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Section 3, this data-centric approach forecloses the very solutions that make successful applications possible. If we

assess hallucinations by their deviation from training data, we are led toward filtering strategies that would eliminate

precisely those outputs where genuine scientific discovery occurs. What matters for scientific reliability is not whether

outputs deviate from training data, but whether they misrepresent the target phenomena we aim to understand. Shifting

to this phenomenon-centric view reveals that many outputs flagged as hallucinations under data-centric definitions pose

no genuine epistemic threat, while others—those that cannot be reliably detected or filtered—demand more careful

management.

To illustrate how scientists address the diagnostic problem, I examine two case studies: AlphaFold 3, which

predicts molecular structures, and GenCast, which generates probabilistic weather forecasts. These models operate in

entirely different scientific domains—one at the scale of molecules, the other at the scale of planetary weather systems.

Nevertheless, both mitigate hallucinations by embedding theoretical constraints and uncertainty management strategies

directly into their modeling architectures. These principles do not eliminate model-generated error entirely, but they

show how, despite the distinctive challenges posed by generative AI, such errors can be effectively managed. Crucially,

these design principles are neither automatic nor inevitable. They emerge from carefully managed scientific workflows,

and their effectiveness depends on deliberate design and maintenance. By articulating the rationale behind these

strategies, I aim to clarify how generative AI can be integrated into scientific practice without unduly compromising

reliability.

2 On the inevitability of hallucination in generative AI

2.1 What is generative AI?

The term generative AI is sometimes taken to refer to any AI system that mimics the cultural products of human

creativity. While many generative models do exactly that, mimicking human output is just one of many ways these

architectures can be deployed. They are also used to produce numerical, physical, and scientific data of all kinds. Here

is a definition that is sufficiently abstract to capture this broader scope:

A generative AI model is a machine learning system trained to produce complex data structures that adhere

to patterns learned from training data, while generalizing beyond the exact instances in that data.
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The word “complex” is carrying a lot of weight. The complexity of model outputs plays a central role in understand-

ing both why hallucinations are inevitable and why they pose a distinctive epistemic threat in scientific applications.

Here, “complexity” refers to high dimensionality: model outputs are structured, multi-component entities rather than

scalar values or discrete labels. In many generative models, output dimensionality is proportional—either strictly or

approximately—to that of the exemplars in the training data. In some cases, such as GenCast, input and output have

equal and fixed dimensionality by design, since both represent meteorological fields over a grid on the Earth’s surface.

In others, such as autoregressive language models, outputs may exceed the length or complexity of the inputs (e.g.,

“Write me an essay about the history of AI”). Even then, they remain bounded by architectural constraints, such as

context windows and maximum token length, and shaped by the complexity and scale of the training data.

In both kinds of case, the generative task involves producing plausible outputs in a high-dimensional space whose

structure is incompletely determined by the training distribution.

Two contrasts help clarify what makes generative AI distinctive. First, unlike classification models, which learn to

represent the conditional distribution P (Y | X) over discrete labels Y , generative models aim to learn a representation of

the full distribution P (X), enabling them to produce novel samples that extend the distribution in coherent ways [Kingma

and Welling, 2013; Goodfellow et al., 2014; Buckner, 2024]. Second, unlike classical generative statistical models such

as Poisson processes or Markov chains, which generate data from predefined parametric distributions [Grimmet and

Sterzaker, 1992], generative AI models learn latent representations that capture complex, often idiosyncratic statistical

structure [Rezende et al., 2014; Yang et al., 2023]. This capacity makes them uniquely valuable for domains where

explicit theory remains incomplete, such as materials science or drug discovery.

2.2 Inevitability arguments

There is a growing literature on the inevitability of hallucination in large language models. Xu et al. [2025] appeal to

no-free-lunch theorems, Banerjee and Jacob [2024] draw an analogy to Gödel’s first incompleteness theorem, and Kalai

and Vempala [2024] provide an information-theoretic lower bound on hallucination frequency. But these arguments

focus on autoregressive architectures and do not transfer straightforwardly to the scientific models addressed in this

paper.

Unlike autoregressive architectures, which are well suited to sequential data such as text, many scientific generative
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models are designed to preserve global coherence across high-dimensional structures. Diffusion models, in particular,

generate outputs through a process of global iterative refinement, progressively denoising a sample over multiple

steps [Song et al., 2021]. Variational autoencoders (VAEs) and generative adversarial networks (GANs), though

architecturally distinct, pursue the same end: to reconstruct complex global structure from sparse data. These models

are typically applied in domains where long-range dependencies span multiple spatial or structural dimensions—protein

folding, weather dynamics, material synthesis. I focus on these architectures for two reasons. First, they have figured

centrally in some of the most celebrated successes of generative AI in the natural sciences. Second, because their

outputs are not merely large but genuinely high-dimensional—structured across space, geometry, or topology—the

detection of hallucination poses distinct challenges. Unlike language models, which produce long sequences of discrete

tokens, these models (often) generate high-dimensional outputs, in which hallucination detection is intrinsically more

difficult. In what follows, therefore, I borrow some ideas from inevitability arguments developed for language models

to this broader class of scientific models.

One kind of argument is broadly information-theoretic. The idea is that generative AI models do not contain enough

information to represent complex empirical distributions accurately. To see this, consider the size of the output space

relative to the model’s internal parameter space. Generative models operate in high-dimensional output spaces, with

far more possible configurations than any dataset can sample faithfully. For example, a 12-megapixel image with 256

intensity levels per channel has 1086,000,000 possible configurations. A 100-amino acid protein has 10130 possible

sequences, not counting conformational variants [Dryden et al., 2008]. Meteorological models, for example, must

track millions of degrees of freedom—combinations of pressure, temperature, humidity, and other variables across

thousands of spatial and temporal points. Even the largest training sets cover only a vanishing fraction of these spaces.

Moreover, models compress these sparse samples into relatively small parameter sets. A protein diffusion model may

train on a few hundred thousand examples, but must generalize across 10100 possible sequences and conformations.

This compression all but ensures that many outputs will be generated in regions where the training data provides little

guidance. And where the training data provides little guidance, hallucination is inevitable.

A second argument is geometric. Generative models learn a mapping from high-dimensional data to latent

representations and generate new outputs by sampling and decoding from this space. But in high-dimensional settings,

geometric properties become unintuitive. As Arjovsky et al. [2017] note, real data typically lie on low-dimensional
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manifolds within a much larger ambient space. When generative models are trained on multiple such manifolds,

interpolation in latent space can result in outputs that fall between those manifolds. These inter-manifold regions are

unsupported by the training distribution. When a model samples from these regions, the result is a hallucination.

Both arguments suggest that generative models are destined to produce outputs that are, in some sense, wrong. But

they say nothing about another property that is both commonly associated with hallucination, and important in thinking

about generative AI in scientific contexts: superficial plausibility. Even if hallucinations are inevitable, they would not

pose much of a threat if they were easy to detect. Unfortunately, when scientific models are operating at the frontier of

human knowledge, they are not. Here is one way to think about why.

Generative models tend to capture short-range dependencies more faithfully than long-range ones. This reflects a

basic statistical fact: the nearer the elements, the clearer the pattern. Local structures such as bond angles in molecules

or temperature gradients in weather fields recur with high signal and low variation. Long-range dependencies, by

contrast, are more easily obscured by noise. They often involve more subtle or indirect interactions, and models may

lack both the capacity to represent them and the training data to learn them reliably. As a result, generative models,

whether built on diffusion processes or transformers, often produce outputs that are locally plausible but globally flawed.

A protein may contain chemically sound fragments yet fold into an unstable conformation. A weather forecast may

model regional dynamics with precision while violating large-scale conservation laws. Large language models exhibit a

parallel tendency: they produce coherent sentences and paragraphs that fail to cohere at the level of extended argument.

In each case, local plausibility masks more distributed structural flaws.

These considerations motivate a general conclusion: any generative model that aims to produce complex, structured

data will sometimes produce hallucinations. Moreover, contrary to what the recent success of AI scaling laws might

suggest, even massive increases in the size of the training data will not make hallucinations of this kind go away.

2.3 Hallucination in diffusion models, and a proposed solution

This conclusion is reinforced by more targeted empirical work on diffusion models. A recent study by Aithal et al.

[2025] provides the first detailed characterization of hallucination in these models. Their analysis of the problem, along

with their proposed mitigation strategy, offers a useful point of contrast with the account I will develop.

First, a word about diffusion models themselves. These models are trained by corrupting data through a forward
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process that gradually adds Gaussian noise over many steps, until the data is nearly indistinguishable from pure noise.

The model then learns to reverse this process by denoising: at each step, it estimates how the noisy data point should be

adjusted to make it more likely under the original data distribution. This adjustment is governed by the score function,

defined as the gradient of the log-density of the data distribution with respect to the input. Rather than learning the data

distribution directly, diffusion models are trained to approximate this score function. But neural networks tend to learn

smooth approximations of it, even when the true function contains sharp discontinuities. As Aithal et al. emphasize, this

smoothness leads to interpolations across low-density regions which, in turn, leads to hallucinations.3

Aithal et al. train diffusion models on synthetic datasets specifically designed to make the structure of the data

manifold transparent. In one experiment, the training data is sampled from a mixture of eight well-separated Gaussians,

with each point drawn from a single mode. In another, they use binary 10×10 grids, constrained so that exactly half

the cells are activated according to simple structural rules. The purpose of these setups is to ensure that the generative

principles underlying the training data are fully known. This allows them to test whether a diffusion model can learn

those principles without producing spurious outputs.

They build on the same basic intuition as the preceding arguments: hallucinations arise when a model generates

samples in low-density regions of the learned distribution. To make this idea precise, they introduce a threshold-based

definition of hallucination:

Hϵ(q) = {x | q(x) ≤ ϵ} (1)

Here, q(x) is the model’s estimated probability density at output x, and ϵ is a small threshold. Samples that fall in

regions of low density, such as the space between well-supported modes, are flagged as hallucinations.

Aithal et al. also offer a proposed solution to the problem of hallucination, and it is underwritten by their formal

definition. They introduce a distance metric (operationalized via the variance of the model’s prediction x̂0 as a proxy

for density) that quantifies how far a generated output strays from known high-density regions in the training data.

Any sample falling below the threshold—i.e., in the set Hϵ(q)—is discarded. By adjusting ϵ, they aim to eliminate

3The score function of a distribution q(x) is defined as the gradient of its log-density: ∇x log q(x). This function reflects how the
probability density changes near a given point. In many real-world distributions—especially those with multiple distinct modes—the
log-density may change abruptly between regions, resulting in sharp transitions or discontinuities in the score function. But neural
networks tend to approximate this function in a smooth and continuous way, which causes them to interpolate across gaps between
modes. For further explanation, see Luo [2022] or Song et al. [2021].
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hallucinations while retaining most legitimate outputs. According to their evaluation, this method removes 95% of

hallucinatory samples while preserving the vast majority of in-distribution outputs.

This filtering solution is entirely reasonable when applied to synthetic datasets where the data-generating process is

both simple and fully specified, and designed to test model behavior rather than to represent an external phenomenon

of scientific interest. However, in a scientific setting, our primary goal is to acquire information about the nature of

the target. Specifically, the aim is to discover hidden structure that is not explicitly represented in the training data.

But here, we encounter a fundamental difficulty with the conception of hallucination we have employed thus far: a

generated output that falls between known modes may signal either a modeling error or a discovery—an instance of

structure that the training data failed to make explicit. In the context of scientific inquiry, then, Aithal et al. [2025]’s

solution is too conservative: it eliminates precisely those cases where the most interesting knowledge might emerge.

If hallucination were simply a matter of deviation from training data, then every output that deserves to be called a

genuine discovery would, ipso facto, count as a hallucination, and nearly all of those would get filtered out.

Scientific generative models are effectively engaged in inductive inference. And, as the logicians say, inductive

inference is ampliative. Yet this ampliative capacity leaves us with a problem: when does generalization constitute

genuine scientific discovery, and when does it constitute hallucination? Answering this requires shifting attention from

the training data toward the empirical target phenomena. So we need an account of hallucination centered on how

model outputs inform (or mislead us about) the target system itself.

3 Rethinking hallucination

Before developing an improved analysis of hallucination, I want to zoom out briefly and draw a parallel between the

data-centric attitude that seems prevalent in AI today and a similar attitude that prevailed in 20th-century philosophy

of science. The logical empiricists (especially Carnap [1928] in the Aufbau) viewed science as the reconstruction of

observational data. That view withered under criticism, but the underlying idea that theories earn legitimacy only by

recovering or predicting patterns in data of some sort seems to have been widely accepted well past the middle part of

the twentieth century. But as But as Bogen and Woodward [1988] forcefully argued, this outlook fails to account for the

constructed nature of data. Because most of the data sets that scientists work with are shaped by the contingencies of

measurement techniques and experimental design, scientific reasoning necessarily involves questions about how data
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can sometimes mislead us about the nature of the target phenomenon. To put this thought in slogan form, the data are a

means to an end, rather than an end in themselves.

Once we accept that the goal of science is not fidelity to the data but fidelity to the phenomenon, we arrive at a

different picture of how generative AI models ought to be assessed. A model’s training data does not define the limits of

its validity. What matters is whether its outputs illuminate the target. This idea is visualized in Figure 1. The relationship

between a model’s output and the training data is one of statistical resemblance; the relationship between the output and

the target phenomenon is representational. In the introduction I said that a hallucination is an error that is produced by

Figure 1: Diagram illustrating the relationship between a target phenomenon, a dataset constructed from observations
of the target (second box), a generative deep neural network (DNN), and the DNN’s output. The DNN produces outputs
that resemble samples from the training data but do not represent them. Whether an output functions as a representation
depends on our inferential practices, and in scientific contexts, these practices are aimed at understanding the target
phenomenon—not merely reconstructing the training data. The backward arrow (“similarity without representation”)
indicates that while the model output may exhibit statistical similarity to training data, it is not used as a representation
of the training data itself. Rightward arrows indicate causal rather than representational relations.

the model (rather than one that is inherited from the training data.) An error is a deviation from some standard, and the

picture above makes it clear that the target phenomenon, rather than the training data, is the relevant standard. But now

we should also ask: what kind of deviations count as errors? That question has no straightforward answer because what

counts as an error depends in part on the interpretive practices of the relevant scientific community.

To see why interpretation matters, consider a non-scientific example. The website thesecatsdonotexist.com

produces realistic images of cats using a StyleGAN model trained on photographs of real cats. Now suppose you

were learning about cats from a sequence of images that included both real photographs and outputs from this model.

According to the canonical interpretive scheme for photographs, according to which they depict particular, spatiotem-
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porally located individuals, the StyleGAN images count as misrepresentations. However, if you can reliably identify

which images come from the StyleGAN, these misrepresentations need not stand in the way of the acquisition of

new knowledge. The synthetic images still provide accurate information about the statistical properties of cat-like

appearances, even though they fail as photographic representations of particular animals.

The crucial point is that an output can be a misrepresentation according to the standard interpretive scheme for its

domain, and nevertheless remain epistemically benign as long as users can detect it and adjust their interpretive stance

accordingly. When mixed with genuinely photographic images, the StyleGAN images are hallucinations, but, even

if they differ systematically from genuine photos in ways that are hard to see, they need not cause any false beliefs

about cats.4 In scientific contexts, similarly, an output might misrepresent the target phenomenon according to standard

domain conventions, and yet remain benign or even useful if researchers can identify it and interpret it appropriately.

This puts us in position to distinguish hallucinations from another familiar category of scientific misrepresentation:

idealizations. Scientific models include systematic distortions—treating gases as point particles or assuming frictionless

planes—to render phenomena tractable [Weisberg, 2007; Strevens, 2016]. These are strategic distortions, deliberately

introduced to facilitate inference. Idealizations involve misrepresentation, but they operate within a well-understood

interpretive framework where the distortions are controlled and their effects on downstream inference are anticipated.

Hallucinations, by contrast, are non-strategic misrepresentations—unintentional artifacts of the generative process that

must be either filtered out or managed through interpretive reframing.

With these distinctions in place, we can now define hallucinations for scientific applications of generative AI. A

hallucination is a generative AI model output that satisfies three conditions:

1. It counts as a misrepresentation of the target system according to the canonical interpretive scheme for outputs of

that kind.

2. It is non-strategic: an unintended artifact of the generative process rather than a deliberate idealization.

3. Its misrepresentational status was produced by the model’s generative activity, rather than having been inherited

from the training data.

4This is why we can coherently talk about detecting, flagging, and filtering hallucinations without contradiction. Hallucination
is defined by misrepresentation according to canonical interpretive schemes, not by capacity to produce false belief. Successful
detection simply prevents epistemically harmful misrepresentations from propagating through the workflow.
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5

This definition is intended to pick out the class of hallucinations more accurately than existing alternatives, but

it is also structured to help analyze how scientists address the diagnostic problem introduced earlier. The three-part

definition directs our attention to the right questions: (1) What interpretive scheme governs scientific practice in this

domain? (2) How do workflows distinguish strategic from non-strategic misrepresentations? (3) What mechanisms

prevent model-generated errors from propagating? Our case studies show that when these questions are answered

carefully, the diagnostic problem becomes tractable. Recall that the problem arises from the combination of opacity

and model-generated error: once we discover a hallucination downstream, how can we use that knowledge to improve

reliability? The traditional approach—localizing the guilty parameter and adjusting it—is unavailable. But as we will

see, scientists work around this limitation not by making models transparent, but by embedding them in workflows that

manage error at the level of outputs rather than parameters.

4 AlphaFold and the neutralization of hallucination

AlphaFold, DeepMind’s protein structure prediction system, represents one of the most significant recent achievements

in scientific AI. The second model in the AlphaFold series, AlphaFold 2, solved the long-standing protein folding

problem and led to the 2024 Nobel Prize in Chemistry, awarded to Demis Hassabis, John Jumper, and David Baker.

The latest iteration, AlphaFold 3, builds on this foundation but significantly expands the model’s capabilities. It goes

beyond folding to predict interactions between proteins and small molecules, including ions, nucleotides, and drug-like

compounds. This expansion is enabled by a core architectural shift: AlphaFold 3 incorporates a diffusion module to

generate plausible molecular structures across a broader range of biological targets. But that flexibility also increases

the risk of hallucination. This risk is explicitly acknowledged in the paper that introduces the model:

The use of a generative diffusion approach comes with some technical challenges that we needed to address.

The biggest issue is that generative models are prone to hallucination, whereby the model may invent

plausible-looking structure even in unstructured regions [Abramson et al., 2024, p. 496].

5Because this definition is restricted to generative AI models, it implicitly incorporates the high-dimensional, structured nature of
their outputs. As discussed in Section 2.1, this complexity is central to understanding both why hallucinations are inevitable and why
they pose distinctive epistemic challenges in scientific contexts.
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This admission makes clear that hallucination is not a marginal failure mode, but a central epistemic challenge for

scientific AI. So how does the AlphaFold 3 team mitigate hallucination? The answer lies in two main strategies: (i)

the use of theoretical knowledge to guide training, and (ii) the use of confidence-based error screening to guide the

interpretation of model output.

4.1 Theory-guided training

Unlike large language models,6 which learn statistical structure from vast, heterogeneous, and poorly organized datasets,

AlphaFold 3 is trained on the Protein Data Bank (PDB), a highly curated repository of experimentally validated

molecular structures. Moreover, the training procedures encode well-established physical and biochemical constraints

through carefully designed violation loss functions. Candidate outputs are penalized if they exhibit steric clashes,

implausible bond lengths, or physically unrealistic torsional angles—the rotational angles around chemical bonds that

determine backbone geometry.

The necessity of these constraints is demonstrated empirically. The AlphaFold team reports that without violation

loss terms, “the network is observed to frequently violate the chain constraint during the application of the structure

module” [Jumper et al., 2021]. That is, the model produces structures with impossible bond geometries—steric clashes

where atoms are represented closer together than the van der Waals radius permits, peptide bonds at wrong angles,

and so on. The violation loss actively suppresses such physically incoherent predictions by shaping the diffusion

model’s learned score function to reward outputs that adhere to molecular physics. Even with these penalties in place,

AlphaFold’s raw outputs still require a final refinement step using molecular dynamics simulations (Amber force field)

to perfectly enforce physical constraints. This post-processing step indicates just how difficult it is to satisfy these

constraints through neural network training alone.

The epistemic force of AlphaFold’s constraint-based design stems not only from the content of the physical laws it

encodes, but from the fact that the evidential basis for those laws is largely independent of the training distribution.

Confirmation is strengthened when distinct bodies of empirical knowledge, each grounded in a different measurement

techniques, converge on a common target [Sober, 1989; Schupbach, 2018]. The structural regularities distilled into

6Some generative protein folding models, such as Meta’s ESM protein model, are described by their authors as “language
models”, despite being trained on biochemical data rather than natural language. When I use the term “language model”, I am
referring to models trained on natural language.
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the PDB and the theoretical constraints operationalized in the loss function arise from separate physical processes and

measurement paradigms. Their convergence in AlphaFold’s architecture transforms an inductive generalization into a

theoretically disciplined scientific inference.

Another training-phase technique is cross-distillation, in which AlphaFold is retrained using the outputs of other

models with simpler and more interpretable error profiles. Comparing these models is another way that systematic bias

can be exposed. For instance, recent work [Brotzakis et al., 2025] retrained AlphaFold on coarse-grained structural

approximations, increasing the model’s caution in structurally ambiguous regions where hallucinations tend to arise.

This analysis also speaks to concerns about whether deep learning models can acquire causal knowledge. Some

critics worry that DNNs merely find statistical patterns without learning the causal structure that underlies them [Pearl,

2018; Marcus and Davis, 2019]. AlphaFold’s design suggests a more nuanced picture. While the model may not

represent causal mechanisms in a form that supports arbitrary counterfactual reasoning, its training is nevertheless

disciplined by causal knowledge. Theoretical constraints grounded in physics and chemistry actively shape the

optimization process. Moreover, the Protein Data Bank is not a random sample of molecular configurations but a

theoretically curated archive of structures inferred through techniques like X-ray crystallography, cryo-EM, and NMR

spectroscopy. These techniques themselves depend on causal models of how electromagnetic radiation interacts with

molecular structure. So although AlphaFold may not contain an explicit, manipulable causal model à la Pearl, its

learned representations implicitly encode causal constraints from molecular physics.

4.2 Confidence-based error screening

Hallucinations that cannot be eliminated may still be rendered epistemically harmless, as long as we have a method

for singling them out. That is the role of confidence-based error screening. In AlphaFold, this is achieved (in part) by

means of residue-level reliability scores that help scientists distinguish between outputs that support inference and those

that warrant caution.7

The central tool here is the Predicted Local Distance Difference Test (pLDDT). Rather than measuring proximity to

training examples, pLDDT estimates the local reliability of a predicted structure based on internal consistency cues.

7This functionality is sometimes grouped under the heading of “uncertainty quantification,” but that term often refers to formal
confidence intervals in the context of statistical testing. In contrast, AlphaFold’s scores are learned by the model and serve a primarily
to enable scientists to screen for unreliable outputs. “Confidence-based error screening” is my own term, which I think more
accurately reflects the epistemic function of the relevant techniques.
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Specifically, AlphaFold generates multiple structure predictions through a stochastic sampling procedure, and pLDDT

scores reflect the degree of local agreement among these samples. Where predictions converge tightly, the model assigns

high confidence; where they diverge—often due to physical indeterminacy or lack of constraint—it flags the output

as unreliable. The underlying idea is simple but powerful: hallucinations are not uniform across stochastic samples.

By generating multiple outputs with different random seeds, AlphaFold can identify regions of disagreement and treat

them as signals of uncertainty. Idiosyncratic errors tend to cancel out in the aggregate, allowing the model to screen for

instability without requiring access to ground truth.8

This mechanism is particularly effective in identifying intrinsically disordered regions (IDRs), whose structures are

environmentally contingent and cannot be predicted with high fidelity. Rather than hallucinating a confident structure,

AlphaFold returns low-confidence, flexible representations, rendered in a distinctive “noodle-like” visual form that

contrast sharply with the well-folded, compact forms nearby. This visual convention reinforces the model’s confidence

scores and functions as a cue to practicing scientists that the structure is not to be over-interpreted. Brotzakis et al.

[2025] show that AlphaFold 3 outperforms specialized tools in detecting such regions, despite not being explicitly

trained for this purpose.

One might object that if a model’s representations are inaccurate, one shouldn’t put much stock in its internal

confidence scores either. This worry is not misplaced: confidence-based screening is not epistemically infallible. But its

value does not depend on access to ground truth at inference time. What matters is that these scores correlate robustly

with empirical reliability across a wide range of cases. In AlphaFold’s case, high pLDDT values have been shown to

track subsequent experimental validation with remarkable consistency. The metric does not guarantee correctness, but it

provides a calibrated signal of when the model’s outputs can be used for inference, and when they should not be. This

is enough both to shift hallucinations from epistemic threats to manageable uncertainties, and to give scientists license

to treat the high-confidence outputs as serious candidates for belief.

Crucially, AlphaFold achieves this level of reliability despite the opacity of its internal representations. Its

trustworthiness does not depend on understanding what individual parameters represent, but rather on how the model

is embedded in a carefully designed workflow. Theory-guided training shapes the model’s outputs through physical

8pLDDT scores are produced by a head in AlphaFold’s architecture that is trained to predict the expected deviation between
predicted and true interatomic distances for each residue. During training, this head is supervised using experimentally validated
structures, allowing the model to calibrate its internal confidence estimates. At inference time, however, the score is computed purely
from the model’s own internal representations; no comparison to ground truth is made.
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constraints, while confidence-based screening provides systematic signals about when those outputs can support reliable

inference. This is the core insight of computational reliabilism [Durán and Formanek, 2018; Duran, 2023]: models

can support reliable inference even when they are not transparent, so long as they are embedded in well-designed

error-screening workflows.

It is worth contrasting this approach with filtering-based methods like those proposed by Aithal et al., which

define hallucinations as outputs that deviate from the training distribution. As argued in Section 2, such deviations

are inevitable in high-dimensional generative models. But AlphaFold’s confidence-based error screening does not

treat deviation from training data as a defect per se. Unlike distributional filters that discard statistically anomalous

samples, pLDDT permits substantial departures from the training distribution as long as they are robust across the

model’s internal ensemble. This allows AlphaFold to support meaningful extrapolation, while still flagging outputs that

are likely to be unreliable.

4.3 Scope and Limitations

The strategies demonstrated here succeed because structural biology is a theoretically mature domain. The Protein Data

Bank encodes decades of experimental work, yielding a training corpus of over 200,000 structures. The violation loss

functions operationalize physical laws that have been validated across countless experiments: van der Waals radii, bond

angle constraints, torsional potentials. Confidence scores can be calibrated against ground truth because experimental

validation techniques like X-ray crystallography, cryo-EM, and NMR spectroscopy are well-established and widely

available.

In domains where such resources are absent, comparable reliability may be unattainable. Theory-guided training

requires robust theory to guide it. Confidence-based screening requires extensive validation data to calibrate against.

AlphaFold’s success demonstrates what is possible when generative AI is embedded in a mature scientific framework,

but it does not show that similar workflows can be constructed anywhere.

5 From molecules to meteorology

If AlphaFold demonstrates how generative AI can support inference in molecular biology, GenCast shows how the

same epistemic principles extend to large-scale dynamical systems. Unlike protein folding, which targets a stable
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conformational structure, meteorological forecasting concerns a chaotic, evolving system in which small errors in initial

conditions can rapidly amplify [Lorenz, 1995]. It also lacks a clearly defined end state. Traditional numerical weather

prediction (NWP) systems, such as those developed by the European Centre for Medium-Range Weather Forecasts

(ECMWF), generate forecasts by numerically solving fluid dynamics equations. These methods are physically grounded

and benefit from interpretable parameters, but they are computationally intensive. The challenge is especially acute for

low-frequency, high-impact events—such as floods or wildfires—which lie in the tails of the distribution. Capturing

them reliably requires extremely large ensembles, and computational costs rise steeply with event rarity.

GenCast offers a relatively computationally efficient alternative. It is a new, diffusion-based generative model trained

on ERA5, a reanalysis dataset9 produced by the European Centre for Medium-Range Weather Forecasts (ECMWF).

ERA5 combines physics-based simulations with extensive observational data, including satellite, radar, and ground

measurements, and uses advanced data assimilation techniques. The result is not a record of direct observations. Rather,

it is a model-informed reconstruction that aims to balance empirical accuracy with physical coherence.

Like AlphaFold, GenCast learns the statistical structure of valid trajectories and generates plausible forecasts via a

generative process. Though it lacks an explicit representation of fluid dynamics, it matches or exceeds the performance

of traditional simulation-based systems on several standard forecasting metrics [Price et al., 2024]. Earlier models such

as Pangu Weather [Bi et al., 2023] achieved comparable accuracy, but GenCast was the first to combine this with a

systematic probabilistic evaluation framework. This probabilistic framework enables systematic assessment of when

and where the model’s predictions are reliable.

As with AlphaFold, GenCast’s reliability stems from its integration into a theory-informed workflow. Both systems

are trained not on raw, unstructured data but on theoretically curated datasets: AlphaFold on the Protein Data Bank,

which encodes experimentally validated molecular structures, and GenCast on ERA5, which integrates physical models

with observational data to reconstruct coherent atmospheric states. In each case, domain knowledge shapes the training

corpus itself, ensuring that the model learns from inputs already disciplined by physical theory. Moreover, like

AlphaFold, GenCast incorporates physically grounded loss functions that penalize violations of general physical laws

such as conservation of mass, momentum, and energy [Kashinath et al., 2021]. Earlier machine learning models could

9In meteorology, a reanalysis is a dataset created by assimilating diverse historical observations into numerical weather prediction
models, producing a spatially and temporally coherent reconstruction of past atmospheric states. Although physically constrained,
reanalysis outputs are model-dependent and may reflect biases or limitations of the underlying data assimilation systems [McGovern
et al., 2024].
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generate forecasts that appeared locally plausible but violated global coherence. For example, they might predict a

negative humidity value or a physically unrealistic temperature gradient [Watt-Meyer et al., 2021]. GenCast avoids such

failures by incorporating these physical constraints during training and by relying on architectures that tend to preserve

them at inference time. These practices reduce the risk that model outputs will be epistemically disruptive, in the sense

defined in Section 3.

These theoretical constraints help ensure that GenCast’s outputs are physically plausible—but plausibility alone

does not guarantee reliability. As with AlphaFold, GenCast also implements a strategy for detecting and managing

residual errors. In place of AlphaFold’s explicit confidence scores, GenCast addresses hallucination through a form of

ensemble-based uncertainty estimation. Rather than assigning confidence values to individual predictions, it introduces

stochastic variation at inference time, generating an ensemble of plausible forecasts from different random seeds.

Given the chaotic nature of weather systems, each trajectory varies in local details, but the ensemble as a whole

preserves coherent global structure—reflecting past variability rather than hand-tuned perturbations [Lessig et al., 2023].

The epistemic value of this approach lies in how this variability reveals where inference is likely to be unreliable.

Because hallucinations differ across stochastic runs, their dispersion serves as a signal of epistemic instability. Unstable

predictions appear as outliers, while robust features emerge as recurring patterns. In this way, GenCast provides a

confidence signal. Although it is not a separately computed output, as it is in AlphaFold, it is a reliable statistical pattern

that expert scientists can leverage.

One way to assess how well GenCast’s internal uncertainty estimates align with forecasting performance is

through the spread–skill ratio, which compares the ensemble’s internal variance (the spread) with its actual forecast

error (the skill).10A spread–skill ratio near 1 indicates that the model’s uncertainty estimates are well-matched to its

performance—neither overconfident nor needlessly conservative. In the GenCast evaluation, this ratio remained close to

1 across a range of forecast horizons (i.e., the time intervals into the future for which predictions are made), confirming

10The spread–skill ratio (SSR) compares an ensemble’s internal variance (spread) to its forecast error (root-mean-square error,
RMSE). It is given by:

SSR =
Spread
RMSE

=

√
1
N

∑N
i=1(fi − f̄)2√

1
M

∑M
j=1(f̄j − oj)2

where fi is the forecast from ensemble member i, f̄ is the ensemble mean forecast, oj is the observation at verification case j, N is
the number of ensemble members, and M is the number of forecast–observation pairs. An SSR near 1 indicates well-calibrated
uncertainty; values significantly greater or less than 1 suggest overdispersion or underdispersion, respectively [Fortin et al., 2014].
Variations on this definition exist, and there is ongoing debate about which formulation is most appropriate in different settings.
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that the ensemble’s internal dispersion reliably mirrors the inherent empirical uncertainty in chaotic systems [Price

et al., 2024].

5.1 Scope and Limitations

GenCast inherits its reliability from meteorology’s theoretical and observational infrastructure. Atmospheric dynamics

obey quantitative physical laws (Navier-Stokes equations, thermodynamic principles, conservation laws) that can be

encoded in loss functions. The ERA5 reanalysis dataset integrates decades of satellite, radar, and ground observations

with physics-based models, providing a training corpus that is both extensive and theoretically constrained. Forecast

verification is rapid: predictions can be checked against actual weather within days or weeks, enabling continuous

calibration of ensemble-based uncertainty estimates through metrics like the spread-skill ratio. This combination of

quantitative theory, dense observational networks, and fast empirical feedback is not universal. In domains lacking

these features—where theories are qualitative, data are sparse, or validation timescales are long—ensemble-based

uncertainty estimation may be less reliable and physical constraints harder to operationalize. For example, climate

modeling on decadal timescales faces validation challenges that weather forecasting does not, since we cannot quickly

verify 30-year projections. Similarly, in fields where physical laws are poorly understood or observational coverage is

patchy, the confidence signals that GenCast provides may not emerge reliably. GenCast demonstrates how theory-rich

workflows can discipline generative inference under favorable conditions, but these conditions cannot be assumed to

hold everywhere.

GenCast’s success shows how hallucinations can be made epistemically tractable. Rather than causing scientists

to adopt false beliefs, errors are converted into expected, bounded deviations that the broader workflow is designed

to absorb. This undermines the suspicion that opaque generative models leave us with no alternative but what Duede

memorably called brute inductivism. On that view, the lack of interpretability precludes the possibility of theory-guided

inference, and users are left to trust outputs solely on the basis of observed empirical correlations. But as the GenCast

case makes clear, we have more to rely on here than the naked predictive track record. Ensemble-based uncertainty

modeling converts errors into calibrated signals about where predictions are reliable. By combining theory-informed

training with explicit error detection practices, GenCast enables a mode of inference that is neither brute nor blind. It

underscores the same lesson we saw in AlphaFold: generative models become reliable not by virtue of their internal
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transparency, but by being embedded in theory-rich, uncertainty-aware practices that help scientists anticipate and

manage error.

6 Discovery and justification

I have argued that the threat of hallucination does not undermine the reliability of scientific AI because generative

models can be embedded in epistemically robust workflows. Yet one might object that my emphasis on strategies

for reliability misses what ought to be the centerpiece of any response to concerns about hallucination: the main

epistemic safeguard for scientific AI is post-hoc empirical validation. We trust AlphaFold primarily because we can

experimentally test its predictions, and we trust GenCast because we can wait two weeks and see whether it rains.

This objection is inspired by Duede’s [2023] argument that concerns about AI reliability often reflect a misunder-

standing of its scientific role. Duede claims that AI is fundamentally a tool for discovery, not for justification. On this

view, my concern about hallucination wrongly presupposes that AI is in the business of delivering justification for model

outputs. Duede might argue that AI merely offers heuristic guidance: it narrows the space of relevant hypotheses, but

those hypotheses only become candidates for belief once they have been subjected to empirical test. From a thoroughly

empiricist standpoint, the strategies scientists use to mitigate hallucination appear secondary—or even unnecessary.

This response echoes Karl Popper’s [1959] influential distinction between the context of discovery and the context

of justification. Popper famously argued that the epistemology of science should concern itself solely with justification

through rational reconstruction, since the processes of discovery are guided by intuition, creativity, and other factors

beyond rational control.

Yet the historical turn in the philosophy of science has cast doubt on the sharpness of this division. Popper’s

distinction, while conceptually useful, is ultimately artificial. In practice, discovery and justification are often intertwined.

Scientific heuristics are not arbitrary guesses; they are evaluated by their empirical traction and shaped by theoretical

expectations. This is especially evident in the development and funding of generative AI systems like AlphaFold.

The model was not funded merely for its capacity to generate intriguing hypotheses, but because, prior to large-scale

empirical validation efforts, its developers demonstrated that it could reliably predict biologically plausible protein

structures. Its ability to infer accurate 3D conformations from amino acid sequences had clear implications for

understanding biological function and disease. This predictive success led to rapid adoption across the life sciences,
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where researchers now use its outputs to guide experimentation and hypothesis formation. AlphaFold is not treated as a

tool for blind exploration, but as a theory-informed model capable of supporting novel inferences. When scientists take

one of its outputs to be approximately true, their belief enjoys a measure of epistemic justification.

The same reasoning applies to weather models such as GenCast. Its probabilistic forecasts are not treated as

mere exploratory hypotheses awaiting eventual testing; rather, its reliability is continuously assessed through rigorous

calibration against both theory and observational data. GenCast is already being used operationally, for example in

forecasting applications like OpenSnow, which helps backcountry skiers assess conditions and make daily decisions.11

Such practical use makes sense only if GenCast provides a justified basis for action in advance, rather than merely

suggesting hypotheses for empirical investigation.

More generally, this suggests a modest lesson: generative models are most effective where background knowledge

is sufficiently extensive to constrain their outputs and structure their use. In domains like protein folding or meteorology,

theory provides a framework that helps identify and account for error. Where such knowledge is lacking, errors are

harder to interpret and more likely to mislead. Generative models can accelerate discovery, but they do so most reliably

where prior understanding already runs deep.

Duede rightly challenges overly skeptical views that demand too much of generative AI. But by relegating AI

entirely to the context of discovery, he leans too heavily on a distinction that, in practice, is difficult to sustain. Discovery

and justification are deeply intertwined in scientific inquiry. Principled strategies for managing hallucination are not

epistemically superfluous; they are essential to the responsible integration of AI into scientific practice.

Another closely related objection is worth addressing. One might worry that the strategies I have described all

have a negative cast: they are concerned primarily with screening for error and adjusting our inferences accordingly.

This process of error detection and adaptation, one might argue, is categorically distinct from the accumulation of

positive evidence for the truth of a model’s output. But from a reliabilist perspective, that distinction breaks down. The

reliability of an inferential process increases whenever potential errors are filtered out or otherwise managed. And since

reliability is, for the reliabilist, the key property that transforms true belief into knowledge, the task of identifying and

managing error is directly relevant to the epistemic status of model-supported beliefs.

11GenCast is sufficiently new that real-world applications are only now emerging. It is likely that higher-stakes applications will
soon follow.
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7 Error mitigation and the construction of reliable science

Generative AI is increasingly central to scientific inquiry, yet the specter of hallucination has raised legitimate doubts

about its reliability. I have argued that while hallucination presents a novel epistemic threat, it is not a reason to adopt

wholesale skepticism about the use of generative AI in science. The challenge can be addressed by shifting from

a data-centric to a phenomenon-centric conception of hallucination. Rather than assessing model outputs by their

deviation from training data, we must evaluate them by their correspondence with target phenomena. This shift opens

space for alternative reliability strategies, such as theory-guided training and confidence-based screening, that establish

systematic output-to-target connections despite opacity. As the cases of AlphaFold and GenCast demonstrate, these

methods do not eliminate error, but they make errors anticipatable and manageable.

Although these strategies do not rely on aligning individual model parameters with interpretable features of the

world, they are nevertheless more sophisticated than the kind of brute inductivism that Duede has criticized. The

mechanisms by which these systems manage error are not ad hoc. They draw on independently supported theoretical

knowledge about target phenomena and integrate that knowledge into scientific workflows during model development

and in the interpretation of results.

Earlier I invoked Durán’s computational reliabilism to explain how AlphaFold achieves reliability through workflow

design despite opacity. Durán and Formanek (2018) originally developed this framework for opaque computer

simulations, and Durán [2025] has extended it to algorithms more broadly. Computational reliabilism emphasizes that

reliability assessment should focus on the process rather than the algorithm in isolation, where “process” encompasses

the broader socio-techno-scientific context in which algorithms are designed, used, and maintained.

My contribution extends this framework to address hallucinations in generative AI for science. The distinctive

challenge is that hallucinations must be assessed by comparing outputs to target phenomena rather than training data.

This comparison is operationalizable only where we possess sophisticated theoretical knowledge about the target

system. Knowing that proteins fold according to thermodynamic principles, that weather obeys conservation laws,

or that molecular bonds have characteristic geometries is what enables the two reliability strategies examined here.

Theory-guided training works by embedding constraints derived from our understanding of target phenomena into

the model’s architecture and loss functions. Confidence-based screening works because we can calibrate uncertainty

metrics against theoretical expectations about when predictions should and shouldn’t be reliable. Without mature
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domain theory, we lack the resources to establish systematic connections between model outputs and target phenomena.

This explains why these strategies succeed in structural biology and meteorology but cannot be assumed to work

universally. Both domains benefit from decades of theoretical development: protein folding thermodynamics, structural

biochemistry, atmospheric physics, fluid dynamics. This theoretical maturity provides the scaffolding needed to

discipline generative models. Where such theory is absent or immature, comparable reliability may be unattainable

regardless of computational resources or data availability. Understanding reliability requires assessing the workflow as

a whole, not just the model in isolation. Consider Isomorphic Labs, one of the most prominent companies building

drug discovery pipelines around AlphaFold-style models. In a recent interview, Rebecca Paul, the company’s head of

medicinal chemistry, explained that AlphaFold predictions with binding probability scores below 0.7 are systematically

filtered out before any synthesis occurs [Paul and Jaderberg, 2025]. Predictions above this threshold are then validated

experimentally through X-ray crystallography, with results feeding back into model refinement. The model output is

just one step in a larger process that includes filtering based on confidence thresholds, experimental validation, and

iterative improvement. Reliable inference emerges from this extended workflow, not from the model’s computation

alone.

This observation connects to longstanding debates in reliabilist epistemology about process individuation [Goldman,

1986]. What counts as “the process” that produces belief? Processes can be individuated more narrowly (the model’s

computation) or more broadly (the theory-informed workflow connecting outputs to phenomena). In traditional

scientific contexts, we assess experimental procedures as wholes, not individual instruments in isolation. The same

principle applies here: the appropriate unit of assessment is the theory-informed, uncertainty-aware, iteratively validated

workflow—not the model’s internal mechanisms. This is why opacity, though epistemically significant, does not

preclude reliable inference. The workflow, infused with theoretical knowledge at multiple points, is what must be

reliable.

These conclusions about workflows and process individuation apply clearly to the current generation of generative

AI systems. But given how rapidly AI architectures are evolving, I want to make two additional claims about the

intended scope of the arguments above.

First, about the workflows: The strategies examined here (theory-guided training and confidence-based screening)

depend fundamentally on sophisticated theoretical knowledge about target phenomena. Establishing reliable output-
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to-target connections requires mature domain theory, regardless of the model architecture employed. Theoretical

understanding of protein physics, atmospheric dynamics, and molecular chemistry is what enables the embedding of

constraints during training, the calibration of uncertainty metrics, and the interpretation of systematic failure patterns.

Moreover, this theoretical knowledge enters the reliability-supporting workflow at multiple stages, not only during

model training but also in filtering outputs, designing validation experiments, and interpreting results. Where such

theory is available, as in structural biology and meteorology, generative AI can support reliable inference. Where it is

not, alternative approaches will be needed.

Second, about the models themselves: A closely related question is whether the models must be domain-specific,

or whether general-purpose architectures could eventually achieve similar reliability when embedded in appropriate

workflows. On this question I remain agnostic. While domain-specific models currently outperform general-purpose

models (largely because domain-specific architectures naturally align with domain-specific workflows), there are

reasons to take seriously the possibility that general-purpose models might eventually achieve comparable reliability.

Multi-modal models such as GPT-4 and Gemini 2.5 exhibit capacities that cannot be replicated by chaining together

narrow tools. Their integration of language, image, and video appears to produce synergies within the model’s latent

space that surpass what modular composition can deliver. Whether chemical or physical representations could be treated

as additional modalities in this sense, and whether such integration, when combined with domain-specific theoretical

scaffolding at the workflow level, would yield genuinely new epistemic benefits, remains an open question worth

exploring.

The central argument of this paper reflects the Deweyan insight quoted in the epigraph: scientific knowledge is not

a matter of grasping antecedently given certainties, but of developing ways to make sure—methods for identifying error

and managing uncertainty. Generative AI calls for new methods of doing that work, and simultaneously makes that

work more difficult.12 Nevertheless, as AlphaFold and GenCast demonstrate, there is reason to hope that we will be

equal to the task.

12This dependency on foundational science suggests a cautionary note about research funding. While enthusiasm for AI-driven
science grows, there is a risk of reallocating funding away from traditional theory-building and experimentation. Yet generative AI
models achieve reliability precisely because they are embedded in theoretical frameworks developed through decades of foundational
research. The epistemic scaffolding that AI-based inference depends on requires continued investment. Neglecting these foundations
would be self-defeating.
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Julian Arnold, Frank Schäfer, Alan Edelman, and Christoph Bruder. Mapping Out Phase Diagrams with Generative

Classifiers. Physical Review Letters, 132(20):207301, May 2024. doi: 10.1103/PhysRevLett.132.207301.

S. Banerjee and A. M. Jacob. LLMs will always hallucinate, and we need to live with this. arXiv preprint

arXiv:2409.05746, 2024.

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate medium-range global

weather forecasting with 3D neural networks. Nature, 619(7970):533–538, July 2023. ISSN 1476-4687. doi:

10.1038/s41586-023-06185-3.

James Bogen and James Woodward. Saving the Phenomena. Philosophical Review, 97(3):303–352, 1988. doi:

10.2307/2185445.

Z. Faidon Brotzakis, Shengyu Zhang, Mhd Hussein Murtada, and Michele Vendruscolo. AlphaFold prediction of

26



structural ensembles of disordered proteins. Nature Communications, 16(1):1632, February 2025. ISSN 2041-1723.

doi: 10.1038/s41467-025-56572-9.
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